• Skip to primary navigation
  • Skip to main content
  • Skip to footer
ners logo
  • Current Students, Faculty & Staff
  • Reporting Concerns
  • COVID-19
  • Giving
  • Faculty Positions
  • About
    • Chair Message
    • Facts & Figures
    • History
    • DEI
      • Reporting Concerns and Misconduct
      • NERS DEI Town Hall
      • Addressing Structural Racism in Nuclear Energy
    • Contact Us
    • Faculty Positions
  • Research
    • Fission Systems & Radiation Transport
    • Materials & Radiation Effects
    • Plasmas & Nuclear Fusion
    • Policy & Climate
    • Radiation Measurement & Imaging
    • Labs List
  • Academics
    • Undergraduate
      • Degree Options
      • Degree Requirements
      • Objectives/Outcomes
      • Admissions
      • Undergraduate Research Opportunities
      • Scholarship Opportunities
    • Graduate
      • Requirements/Policies
      • Medical Physics Certificate
      • Funding
      • Admissions FAQs
    • Course Times & Descriptions
    • Virtual Visit
  • News
  • Events
    • Colloquia
  • People
    • Current Students, Faculty & Staff
    • Reporting Concerns
    • COVID-19
    • Giving
Ayman Hawari portrait

Ayman Hawari

home_outline/People/Advisory Board/Ayman Hawari

NERS Advisory Board Member

Section: Academia

North Carolina State University

Distinguished University Professor of Nuclear Engineering, Director of Nuclear Reactor Program

Biography

Dr. Hawari is interested in performing experimental and computational investigation (simulations) to understand the fundamentals of the interaction of radiation with matter and the resulting ramifications that impact the engineering of nuclear systems.  Currently, his research group conducts measurements and simulations (using ab initio and molecular dynamics methods) to investigate the scattering of thermal neutrons in matter and to generate thermal neutron scattering cross-section data. In addition, they apply atomistic modeling techniques and develop experiments to study the behavior of accident tolerant fuel in the extreme radiation and temperature environments of a nuclear reactor.  Hawari’s group is also engaged in the validation and benchmark of modern nuclear reactor simulation tools in support of transient testing of nuclear fuel. All of these thrust areas directly support the development of Advanced Nuclear Reactors including Small Modular Reactor concepts.

Dr. Hawari’s work also focuses on developing and utilizing radiation beams as probes of matter at the nano-scale. This includes the utilization of thermal neutron beams in imaging and scattering applications, and the use of slow positron beams to assay nano-porosity in matter. These types of beams can be generated using a nuclear reactor such as the PULSTAR research reactor on the NCSU campus. Therefore, he is interested in the development of experimental facilities for nondestructive examination at research reactors. Information about the PULSTAR reactor and facilities developed by Hawari’s group can be found here.


Footer

michigan engineering logo
  • Contact Us
  • Giving
  • Graduate Program
  • Undergraduate Program
  • About the Field
  • Faculty
  • Who Hires Nuclear Engineers?
  • Research
  • U-M Engineering Home
  • Strategic Vision

© 2021 The Regents of the University of Michigan Ann Arbor, MI 48109 USA

Privacy Policy | Non-Discrimination Policy | Campus Safety

  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube