COURSE #: NERS 441 CREDITS: 3/Required		COURSE TITLE: Nuclear Reactor Theory I
TERMS OFFERED: Fall		For each prerequisite below, "E" denotes Enforced and "A" denotes Adv
TEXTBOOKS/REQUIRED MATERIAL:		PREREQUISITES:
Duderstadt and Hamilton, Nuclear Reactor Analysis, 1976		NERS 312, Math 454 (A)
INSTRUCTOR(S): Michael Hartman		COGNIZANT FACULTY: Michael Hartman
CoE BULLETIN DESCRIPTION:		COURSE TOPICS: Neutron cross sections, reaction rates, flux and
An introduction to materials used in nuclear systems and		current (12 h), diffusion theory (8 h), numerical solution of the diffusio
		equation (4 h), c riticality and eigenvalue problems (6), multigroup
		diffusion (4 h), point kinetics (10 h), neutron slowing theory (8)
COURSE STRUCTURE/SCHEDULE (Lectures: 2 per week @ 80 minutes; 1 per week @ 50 minutes)		
COURSE OBJECTIVES	1. To teach students the fun	damental behaviors of neutron populations in matter[1,2]
For each Course Objective,	2. To teach students analyti	cal and computational methods for the solution of neutron transport
links to the Program	and diffusion problems [1,2]	
Educational Objectives are	3. To teach students the essential elements of reactor kinetics behavior [1,2]	
shown	4. To prepare students for nuclear reactor core design [1,2]	
COURSE OUTCOMES	1. Demonstrate a fundamental understanding of microscopic and macroscopic cross-sections, and	
For each Course Outcome,	of the features of neutron cross sections. [1 ABET a]	
links to the Program/ABET	2. Demonstrate a solid understanding of fundamental transport concepts such as neutron density,	
Student Outcomes are	neutron scalar flux, neutron energy density. [1,3 ABET a,e]	
shown [#,a-k]	3. Analytically solve problems in neutron transport and diffusion in both non-multiplying and multiplying media. [1,3 ABET a,e]	
		based code to solve neutron transport problems. [1,3,4 ABET a,e,c]
		sed code to solve neutron transport problems [1,3,4 ABET a,e,c]
	6. Describe and qualitativel	y predict reactor transients using point kinetics. [1,3 ABET a,e]
	7. Describe the slowing dow	wn of neutrons, and the influence of cross section resonance.
	[1,3,4 ABET a,e,c]	
ASSESSMENT TOOLS		-term test(s) and/or final examination will be used to measure all
For each assessment tool,	outcomes for individual students under a time constraint.	
links to the Course Outcomes		outcomes under less time pressure and with student collaborations.
are identified		h student at the end of the course assesses all outcomes.
	4. Faculty self-assessment p	provides self-assessment data on all outcomes.

Revision History: September 1998; January 2004: October 2006; July 2010